Telegram Group & Telegram Channel
🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark



tg-me.com/sqlhub/1902
Create:
Last Update:

🚀 Как построить ML-пайплайн в Apache Spark: пошаговый гайд

В свежей статье на KDnuggets рассматривается, как с помощью Apache Spark и библиотеки MLlib можно построить масштабируемый пайплайн машинного обучения для задач, таких как прогноз оттока клиентов.

🔧 Компоненты пайплайна:
- Transformers: преобразуют данные (например, StringIndexer, `StandardScaler`)
- Estimators: обучают модели (например, `LogisticRegression`)
- Pipeline: объединяет все шаги в единую последовательность

🧪 Пример:
1. Загрузка и очистка данных
2. Преобразование категориальных признаков
3. Сборка признаков в вектор
4. Масштабирование данных
5. Обучение модели логистической регрессии
6. Оценка качества модели (accuracy, precision, recall, F1)

📌 Ключевые преимущества:
- Высокая скорость обработки больших объемов данных
- Удобная интеграция с Python через PySpark
- Гибкость и масштабируемость для промышленных задач

Полный разбор с кодом и примерами:
👉 https://www.kdnuggets.com/implementing-machine-learning-pipelines-with-apache-spark

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1902

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Data Science SQL hub from no


Telegram Data Science. SQL hub
FROM USA